Построение линии пересечения конусов методом концентрических сфер
На рисунке ниже изображены два конуса вращения. Их оси i1 и i2, пересекаясь в точке O, образуют плоскость α(i1∩i2), которая параллельна фронтальной плоскости проекций π2.
Для построения линии пересечения конусов, показанных на рисунке, целесообразно использовать метод концентрических сфер. Применение данного метода возможно в результате выполнения следующих условий:
- пересекаются поверхности вращения (в частности, конус с конусом, конус с тором или цилиндром и т.д.);
- оси поверхностей, пересекаясь между собой, образуют плоскость, которая параллельна одной из плоскостей проекций (в рассматриваемом примере пл. α(i1∩i2)∥π2).
Алгоритм построения линии пересечения
Построение линии пересечения начинают с нахождения характерных точек, которые определяют ее границы и видимость относительно плоскостей проекций.
Определение характерных точек
Плоскость α, образованная пересекающимися осями i1 и i2, является общей плоскостью симметрии двух конусов. На рисунке показан ее горизонтальный след h0α. Пересечение пл. α с конусами происходит по образующим S2A, S2B и S1C, S1D. Данные образующие ещё называют очерковыми, так как они очерчивают границы поверхностей (на фронтальной проекции).
Точки F’’, E’’, G’’, K’’, в которых пресекаются прямые S’’2A’’, S’’2B’’ с прямыми S’’1C’’ и S’’1D’’, определяют границы линии пересечения конусов в её проекции на плоскость π2. Для нахождения F’, E’, G’ и K’ проводят линии связи из F’’, E’’, G’’, K’’ до горизонтального следа h0α.
Определение промежуточных точек
Воспользуемся методом концентрических сфер для нахождения множества промежуточных точек линии пересечения. Центром, из которого проводятся вспомогательные сферы, является точка O пересечения осей i1 и i2 рассматриваемых конусов.
Радиус Rmax наибольшей сферы, применяемой в построениях, равен длине отрезка O’’G’’ – расстоянию от точки O до наиболее удаленной от нее точки G пересечения очерковых образующих.
Сфера минимального радиуса Rmin – это сфера, вписанная в один из конусов и пересекающая другой. На рисунке ниже Rmin= O’’H’’, где O’’H’’⊥ S’’2B’’.
Рассмотрим построение точек 1, 2, 3 и 4. Сфера радиусом Rmin пересекается с конусом, в которой она вписана, по окружности. Данная окружность проецируется на фронтальную плоскость проекций в виде отрезка P’’H’’. Кроме того, сфера радиусом Rmin пересекается со вторым конусом по двум окружностям, диаметры которых соответственно равны длинам отрезков M’’N’’ и T’’L’’. Таким образом, на поверхности сферы лежат три окружности, которые пересекаются в общих для двух конусов точках 1, 2, 3 и 4.
Фронтальные проекции 1’’, 2’’, 3’’, 4’’ находятся на пересечении отрезков M’’N’’, T’’L’’ с P’’H’’. Для нахождения горизонтальных проекций 1’, 2’, 3’, 4’ точек 1, 2, 3, 4 на плоскости проекций π1 из центра O’ проводим две окружности с диаметрами M’’N’’ и T’’L’’. Учитывая принадлежность точек соответствующим окружностям, по линиям связи определяем их горизонтальные проекции, как это показано на рисунке выше.
С помощью вспомогательной сферы радиусом Rvar, где Rmin ≤ Rvar ≤ Rmax, найдены точки 5 и 6. Как видно из построений, они находятся на пересечении двух окружностей, которые проецируются на фронтальную плоскость в виде отрезков W’’U’’ и Q’’V’’.
В описываемом способе решения каждая сфера играет роль посредника, содержащего на своей поверхности кривые (окружности), принадлежащие пересекающимся конусам. Действуя в соответствии с приведенным выше алгоритмом, необходимо найти такое количество точек, которое позволит определить геометрическую форму линии пересечения на каждой из проекций.
Найденные точки соединяем плавными кривыми с учетом их видимости. Как видно на рисунке, в результате пересечения конусов образовались две замкнутые линии. Они показаны красным цветом.