Термины, определения и условные обозначения начертательной геометрии

Содержание

  1. Термины и определения;
  2. Условные обозначения;
  3. Способы задания плоскости на чертеже.

Термины и определения

Комплексный чертеж (эпюр Монжа) – чертеж, составленный из взаимосвязанных ортогональных проекций геометрической фигуры. Чтобы преобразовать пространственный макет в эпюр, нужно совместить плоскости проекций П1 и П3 с третьей плоскостью П2, вращая П1 вокруг оси x, а П3 вокруг оси z.

Конкурирующие точки – точки, расположенные на одной проецирующей прямой, но при этом удаленные от плоскости проекций на разное расстояние.

Линии уровня – прямые, параллельные одной из плоскостей проекций.

  • Горизонталь, h – прямая, параллельная горизонтальной плоскости;
  • Фронталь, f – прямая, параллельная фронтальной плоскости;
  • Профильная прямая, p – прямая, параллельная профильной плоскости.

Линии уровня: горизонталь, фронталь и профильная прямая

Метрические задачи – это задачи, целью решения которых является нахождение натуральных величин отрезков, углов, расстояний.

Октант – часть пространства, ограниченная плоскостями проекций П1, П2, П3. В начертательной геометрии выделяют восемь октантов, нумерация и взаимное расположение которых показаны на рисунке.

Расположение и нумерация октантов в пространстве

Отрезок – участок прямой, ограниченный двумя точками.

Плоскости общего положения – плоскости, которые не перпендикулярны ни одной из плоскостей проекций.

Плоскости уровня – плоскости, параллельные одной из плоскостей проекций.

Позиционные задачи – это задачи, целью решения которых является определение взаимного расположения фигур, нахождение точек и линий их пересечения.

Проецирующие плоскости – плоскости, перпендикулярные одной из плоскостей проекций.

Прямые общего положения – прямые, не параллельные ни одной из плоскостей проекций.

Проецирующие прямые – прямые, перпендикулярные одной из плоскостей проекций.

Следы плоскости – прямые, по которым данная плоскость пересекается с плоскостями проекций.

Следы прямойточки пересечения прямой с плоскостями проекций.

Угол между прямой и плоскостьюугол между прямой и её проекцией на эту плоскость.

Условные обозначения

Оси координат:

  • x – ось абсцисс;
  • y – ось ординат;
  • z – ось аппликат.

Проекции точек:

  • A', B', C' … Z' или A1, B1, C1 … Z1 – горизонтальные;
  • A'', B'', C'' … Z'' или A2, B2, C2 … Z2 – фронтальные;
  • A''', B''', C''' … Z''' или A3, B3, C3 … Z3 – профильные.

Проекции прямых:

  • a', b', c' … z' или a1, b1, c1 … z1 – горизонтальные;
  • a'', b'', c'' … z'' или a2, b2, c2 … z2 – фронтальные;
  • a''', b''', c''' … z''' или a3, b3, c3 … z3 – профильные.

Плоскости проекций:

  • П1 или H – горизонтальная;
  • П2 или V – фронтальная;
  • П3 или W – профильная.

Следы плоскости α:

  • h – горизонтальный;
  • f – фронтальный;
  • p – профильный.

Следы прямой l:

  • Hl – горизонтальный;
  • Fl – фронтальный;
  • Wl – профильный.

Способы задания плоскости на комплексном чертеже

Плоскость на комплексном чертеже может быть задана шестью различными способами:

  1. Тремя точками, которые не лежат на одной прямой. На рисунке это т. A, B, C.
  2. Прямой и точкой, не лежащей на этой прямой.
  3. Двумя пересекающимися прямыми.
  4. Двумя параллельными прямыми (пересекающимися в несобственной точке).
  5. Отсеком плоской фигуры Ф.
  6. Следами. Этот способ удобен тем, что позволяет наглядно представить расположение плоскости в пространстве.

Способы задания плоскости на чертеже

Дополнительные материалы: